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Abstract—Indoor localization has been an active research field for decades, where received signal strength (RSS) fingerprinting based

methodology is widely adopted and induces many important localization techniques, such as the recently proposed one building

fingerprints database with crowdsourcing. While efforts have been dedicated to improve accuracy and efficiency of localization,

performance of the RSS fingerprinting based methodology itself is still unknown in a theoretical perspective. In this paper, we present

a general probabilistic model to shed light on a fundamental issue: how good the RSS fingerprinting based indoor localization can

achieve? Concretely, we present the probability that a user can be localized in a region with certain size. We reveal the interaction

among accuracy, reliability, and the number of measurements in the localization process. Moreover, we present the optimal fingerprints

reporting strategy that can achieve the best localization accuracy with given reliability and the number of measurements, which

provides a design guideline for the RSS fingerprinting based indoor localization system. Further, we analyze the influence of imperfect

database information on the reliability of localization, and find that the impact of imperfect information is still under control with

reasonable number of samplings when building the database.

Index Terms—Fingerpringting, localization, performance analysis

Ç

1 INTRODUCTION

INDOOR localization has long been an active research field,
which enables a vast range of mobile computing applica-

tions [1]. Various wireless techniques have been exploited
to achieve accurate and efficient indoor localization, where
the received signal strength (RSS) fingerprinting based
methodology has been a seminal idea induces many indoor
localization systems with different flavours [2]. Most of the
RSS fingerprinting based localization systems are imple-
mented in IEEE 802.11 wireless local area network (WLAN)
environment, where the RSS measured for frames sent from
different access points (APs) is utilized to infer the user’s
location. Specifically, the system first collects the RSS infor-
mation from APs in the area of interest, where each piece of
information is termed as a fingerprint and many such finger-
prints result in a fingerprints database. During the localiza-
tion phase, a user submits measured fingerprints to the
system, which are compared with the fingerprints database
so that the current location of the user can be estimated.

The fingerprints database can be built in many ways. The
element in the database could be deterministic, which is just

the RSS reading obtained from the wireless card’s routine
operation of RSS measurement [3]. The element could also
be probabilistic, which is the RSS distribution that can be
used for location determination in a probabilistic manner.
As the RSS itself is a coarse characterization of radio propa-
gation, which is influenced by many environmental factors,
recent research turns to the finer-grained wireless feature,
i.e., channel state information (CSI) [2], for a higher localiza-
tion accuracy. Moreover, no matter if the RSS or the CSI is
used for fingerprinting, building and updating the finger-
prints database is expensive and laborious for any single
entity, which spurs the recent active research on location
determination with fingerprints collected with the crowd-
sourcing paradigm [4], [19].

While efforts have been dedicated to the RSS fingerprint-
ing based indoor localization in order to improve the accu-
racy and efficiency, performance of the RSS fingerprinting
based methodology itself is still unknown in a theoretical
perspective. Results of empirical studies are highly depen-
dent on experimental environment and implementation [5],
[6], [23], [24], [25]. Theoretical analysis borrowed from rang-
ing based cooperative localization in wireless sensor net-
works is based on ideal radio propagation model and
unsuitable for fingerprinting based localization [25], [29],
[30], [31]. The current lack of a theoretical insight into the
RSS fingerprinting based methodology could incur
the blindness for system designers: Can we further improve
the performance of the localization system with better
implementations or this has been the best we can achieve
with the methodology?

In this paper, we present a general probabilistic model to
shed light on the fundamental issue: how good the RSS
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fingerprinting based indoor localization methodology can
achieve? Concretely, we first generalize the assumption of
the widely used Log-Normal Path Loss (LNPL) model [2] to
provide a more reasonable portrait of the RSS particularly
in the indoor environment. We then construct a multi-
dimensional probability space based on measure theory, in
order to model all possible submitted RSS fingerprints in
the location determination phase. Given the expected accu-
racy, the localization reliability calculation is transformed
into the problem of integration over an event in the multi-
dimensional sample space of the probability space.

Based on the problem formulation, we present domains
of integration in the sample space for the location estimation
in one-dimensional and two-dimensional physical indoor
space, which are used to model localization process in corri-
dors and ordinary rooms, respectively. We then derive reli-
ability of location estimation in the two cases for any given
accuracy requirement. Some interesting findings about the
shape of the integration domains are presented, where skil-
ful mathematical techniques are demonstrated.

Moreover, we provide an insight into the RSS finger-
printing based location determination, where we present
the condition that there must be a function from a particular
subspace of the entire sample space to the physical space.
With such an insight, we present the optimal fingerprints
reporting strategy that can achieve the best accuracy with
given reliability requirement and the number of measure-
ments, which provides a design guideline to the client side
of the indoor localization system.

Further, we analyze the influence of imperfect informa-
tion on performance of localization. The practical finger-
prints database constructed in the training stage is unable to
provide perfect distribution of fingerprints. We present
the probability error of location estimation incurred by the
imperfect information, with the relationship between the
number of sampling in the training stage and probability
error demonstrated.

2 RELATED WORK

2.1 Probabilistic Models Used for Indoor
Localization

The early indoor localization system in the context ofWLAN
is to infer the device’s location using the technique of nearest
neighbour(s) in signal space (NNSS) [3], where the idea is to
compute the Euclidean distance between the measured
RSSes and the recorded RSSes from APs strategically
deployed at a set of locations. The system returns the location
that minimizes the distance. One drawback of the nearest
neighbour approach is that it does not fully utilize the oppor-
tunity of joint location determination from different APs [7],
which leaves room for accuracy improvement.

In order to provide a model for fusing fingerprints from
multiple APs, the probabilistic model has been used to esti-
mate the user’s location. The Nibble system utilizes Bayes-
ian networks to infer the location of a mobile device [7],
where the prior distribution probabilities about a location
are obtained by performing sampling for the location over
several days in the training phase. With the prior distribu-
tion and the Bayesian network, a posterior probability
distribution over an estimated location given a set of finger-
prints can be derived.

Besides the data fusion, the probabilistic model is also
used to deal with the noisy features of the wireless channel,
which incurs significant deviations of the sampled RSS fin-
gerprints from those stored in the database thus impacts the
accuracy. Youssef et al. propose a joint clustering technique
[8], [9], which leverages the Bayes estimation theory
addressing noisy wireless channel and reducing computa-
tional cost of searching through the fingerprints database.
Battiti et al. propose a similar model for localization error
caused by the variability of RSS measurements, which is uti-
lized by the local search heuristic technique for improving
the localization accuracy [16], [17]. A comparative study on
the performance of the indoor localization is presented in
[5], where many probabilistic techniques are briefly sur-
veyed and evaluated with experiments.

While probabilistic models are used in the indoor localiza-
tion system in an ad hocmanner, most of them focus on infer-
ring the best location estimation in the tactical level.
Kaemarungsi et al. develop a preliminary probabilistic model
for a localization system based on the NNSS approach [6].
With simplified assumptions on the wireless channel feature
in the indoor environment, essential properties of the RSS fin-
gerprinting based methodology still remain unknown. The
probabilistic model to be presented in this paper is used to
analyze the fundamental limits of the general indoor localiza-
tion technique based on the RSS fingerprinting basedmethod-
ology. We have a very general assumption of the wireless
channel and no assumption on the pre-deployment efforts.
Many interesting theoretical findings are to be presented,
which have not been shown to the best of our knowledge.

2.2 Crowdsourcing Based Indoor Localization

The indoor localization schemes above requires pre-
deployment efforts: there must be some fixed APs whose
locations are known for calibration. With more and more
APs deployed by different operators, the indoor localization
system designer faces a dilemma: information sources are
not fully utilized if just using a limited number of pre-
deployed APs; however, collecting the training data from
all possible APs could be laborious and expensive for any
single entity. Further, how fingerprints from APs in
unknown locations can be utilized to achieve the most accu-
rate location determination is a challenge.

Chintalapudi et al. propose the EZ localization scheme
with limited pre-deployment efforts [18]. Mobile devices
record and report RSS fingerprints perceived with respect
to different APs at possible unknown locations in the train-
ing phase. The fingerprint is represented as the mean and
standard deviation of the RSS seen from those APs. EZ only
needs the mobile device to occasionally obtain an absolute
location at the edge of the indoor environment through
GPS, and users can move around at will in the indoor space
in normal course.

The almost pre-deployment free service model could
spare explicit efforts needed from indoor localization ser-
vice providers for training data. Fingerprints collection can
be performed with crowdsourcing, where any ordinary
smart phone user without professional training can collect
the fingerprints in an area when passing around. Rai et al.
present a calibration zero-effort system Zee [19], which lev-
erages the embedded sensors of mobile devices to track the
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device itself while simultaneously performing Wi-Fi scans
as the carrier of the device traverses an indoor environment.

Wu et al. develop a crowdsourcing based indoor localiza-
tion system LiFS to avoid the traditional site survey process
[20], [21]. The basic idea is to first deploy some landmarks
in the physical space, then leverage information derived
from smartphone embedded sensors and user motions to
construct a high-dimensional sample space with Multidi-
mensional Scaling (MDS) algorithm, which is used to visu-
alize similarities or dissimilarities in data [20]. Physical
space can also be characterized using the high-dimensional
space induced by MDS. The usera�s location can be esti-
mated by comparing the high-dimensional sample space
and physical space.

Shen et al. present a crowdsourcing based system Walkie-
Markie [26] to generate indoor pathway maps from the user
contributed data. The central idea of the system is to exploit
Wi-Fi-Marks defined by Wi-Fi RSS features in the indoor
space, so that crowdsourced data by dead reckoning [28]
can be fused. Luo et al. propose a self-calibrating participa-
tory indoor localization system [27], which requires no prior
knowledge about the building and user intervention includ-
ing the floor planning.

EZ, Zee and LiFS emphasize on the implementation of
localization systems, and the work of Shen et al. [26] and
Luo et al. [27] present interesting solutions to estimate the
floor planning; however, fundamental issues about the
crowdsourcing based indoor location determination are still
unclear. With those crowdsourced RSS fingerprints, must
there be a mapping from any combination of fingerprints to
a location? Chintalapudi et al. mentioned that RSSes from
different APs are unequally effective [18], but which APs
are more valuable for location determination if the locations
of APs are unknown? Our work in this paper will shed light
on these fundamental issues.

3 SYSTEM MODEL

Consider an indoor space denoted by S, where the long and
narrow space such as a corridor can be modelled as an one-
dimensional Cartesian space with S � R, and the ordinary
space such as a room can be modelled as a two-dimensional
Cartesian space with S � R2. We use ~r to denote a location
in S, where ~r ¼ x1 and ~r ¼ ðx1; x2Þ in the one-dimensional
and two-dimensional Cartesian coordinate system, respec-
tively. For both fingerprints collection and location determi-
nation, the mobile device reports the RSS readings obtained
by measuring signals sent from each AP. The measured
result is a random variable with respect to a specific location
denoted by Pð~rÞ

Pð~rÞ ¼ mð~rÞ þ sY; (1)

where mð~rÞ represents how the mean of RSS readings varies
with respect to locations. Y is the normalized Gaussian ran-
dom variable with Y � Nð0; 1Þ and s is a constant repre-
senting the standard variance of the received signal.

Equation (1) is a generalized model derived from the
LNPLmodel [2], [18]. If we letmð~rÞ ¼ PT � PL0 � 10glog10

d
d0
,

where PT is the transmitted power, PL0 is the path loss at the
reference distance d0, d is the distance between the location
of the transmitter to ~r and g is the path loss exponent,

Equation (1) degenerates to the LNPL model, where sY fac-
tually represents the shadowing effect. Extensive practical
measurements and studies in the literature have revealed
that the value of s can be regarded as a constant in a certain
region if the location of the transmitter is given, which has
been widely adopted in the industrial standardization docu-
ments for radio propagationmodeling [32], [33].

The LNPL model above only considers the path loss and
shadowing but ignores the small scale fading incurred by
multi-path effect. The multi-path effect will result in
changes in the received power, but it is extremely difficult
to accurately predict how the multi-path effect will incur
the change. To this end, we use a function mð~rÞ to denote
the average aggregated effect of free space path loss and
multi-path effect at location ~r, thus we generalize the origi-
nal LNPL model and obtain the radio propagation model as
shown in Equation (1). Such modeling approach is also
adopted by a number of work focusing on characterizing
wireless communication channels such as in [13], [14], [15],
and the Gaussian assumption is validated by a number of
work on indoor localization [6], [9], [10], [11], [12], [18].

As the real wireless environment is very unpredictable,
we are unable to know exactly what the mean value of the
measured RSSes mð~rÞ is like. However, it is observed from
many previous experiments [5], [6], [9], [18] that the mean
of measured RSSes changes in a non-dramatic manner with
the small change of locations, which makes it reasonable to
assume that mð~rÞ is continuous. Thus we can have the fol-
lowing approximation:

mð~r0Þ � mð~rÞ þ rmð~rÞð~r0 �~rÞ; (2)

where ~r0 is an estimated location of the user given the actual
location of the user ~r. Note that all the analysis based on
Eq. (1) can be applied to the scenario using the LNPL model,
which itself has been widely adopted in many indoor locali-
zation systems [6], [9], [10], [18]. The experimental results to
be shown in Section 8 also support the modeling above.

In the training phase, the mobile device is randomly
assigned a point in the indoor space and the device ran-
domly chooses an AP and measures the RSS fingerprint
once. As the result of each measurement is a random vari-
able as shown in Eq. (1), all possible outcomes for the mea-
surement form a sample space V. We define a s-algebra F
that is the collection of all events, where each event is a set
containing zero or more outcomes. Eq. (1) gives an assign-
ment of probabilities to events P : V ! ½0; 1�, thus we can
construct a probability space (V, F , P). Suppose that the
mobile device performs the measurement n times at a given
assigned point, then the Cartesian product of probability
spaces induced by RSS measurements forms an
n-dimensional probability space (Vn;F n;P), where we
abuse P : Vn ! ½0; 1� for the convenience of demonstration.

The location determination phase can be considered as a
mapping M : Vn ! S, ~r0 ¼ Mð~oÞ, where ~o is an outcome of
Vn. It means that the localization system outputs an esti-
mated location ~r0 for a series of measurements of RSSes
from randomly chosen APs. Since RSS measurement results
are independently and identically distributed, the induced
sample spaces of RSS measurements are orthogonal to each
other, and Vn is homeomorphic to n-dimensional Cartesian
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space. If applying the coordinate system of n-dimensional
Cartesian space to Vn, we can obtain a presentation of ~o
denoted as ~P ¼ ½P1; P2; . . . ; Pn�T , in which Pi is the reading
of each measurement result. Consequently, the original
measurement P : Vn ! ½0; 1� becomes f : Rn ! ½0; 1�.

We use Q to denote the area that is centered at the user’s
actual location with radius d in the physical space. EðdÞ is
used to denote the event in the sample space, which makes
the localization system estimates the user’s location to be in
Q. We will use E to represent EðdÞ in the following discus-
sion to avoid tedious mathematical presentation. The size of
d determines the accuracy of the localization system. We use
R to denote the probability that the user’s estimated location
is within the area Q, which is defined as the reliability of the
localization system.

With the definition of accuracy and reliability, we can see
that the probability of the event that the system correctly
estimates the user’s location is

RðEÞ ¼
Z
E

fð~P Þd~P ¼
Z
Q

gð~r0;~rÞd~r0; (3)

where fð~P Þ is the possible measurement of the sample space
in the n-dimensional Cartesian coordinate system, and
gð~r0;~rÞ is the probability distribution function that the user is

localized at ~r0 given that the real location of the user is ~r in
the physical space. Equation (3) indicates that the reliability
can be interpreted as either the probability that the measure-
ment falls into the event region E or the user is localized in
an area that is centered at~r and with radius d. Based on such
a model, we are to calculate the one-dimensional localization
reliability for the case of one-time measurement for a single
AP, and then extend the result to multiple-time measure-
ments for multiple APs in the following section.

4 LOCALIZATION IN ONE-DIMENSIONAL SPACE

4.1 One-Time Measurement for Single AP

We set the origin of the spacial coordinate system at the
location of the sole AP in the one-dimensional physical
space; the corresponding probability density function (PDF)
for each location in the sample space could be represented
as shown in Fig. 1.

The location in one-dimensional physical space is a sca-
lar, and the d neighborhood of the user’s actual location r is
the line segment from r� d to rþ d. Note that the farther
the location is from the AP, the smaller mean value could be
observed at the location; therefore, mðrþ dÞ is less than

mðr� dÞ. The probability the user is localized in the d neigh-
borhood of r (denoted by Q) is equivalent to that the
reported RSSes fall within the range between Phigh and Plow

according to the principle of maximum likelihood estima-
tion (MLE), which is the event E in this case. Due to the
symmetry of the PDF according to Eq. (1), it is straightfor-
ward that fr�dðPhighÞ ¼ frðPhighÞ and frþdðPlowÞ ¼ frðPlowÞ.
We have

Phigh ¼ mðr�dÞþmðrÞ
2 ;

Plow ¼ mðrþdÞþmðrÞ
2 :

(
(4)

thus the reliability

Rðd; r; sÞ ¼
Z Phigh

Plow

frðP ÞdP ¼ erf

�����m0ð~rÞd
2
ffiffiffi
2

p
s

����
� �

; (5)

where erfð�Þ is the error function defined as: erfðxÞ ¼
2ffiffiffi
p

p
R x
0 e�t2 dt:

4.2 Multiple Measurements for Multiple APs

According to probability theory, the average of n i.i.d
Gaussian variables is equivalent to a Gaussian variable with
a standard deviation sffiffi

n
p . Two measurements to a single AP

can be regarded as measurements for two identical APs
located at the same place, which is to be confirmed by our
result shown in Eq. (12). If several measurements are per-
formed on a single AP, the RSS fingerprint is set to be a new
random variable with the standard deviation sffiffi

n
p .

Similar to the situation in Section 4.1, the probability the
user is localized in Q is equivalent to the probability the
user’s measurement of the RSS Pi falls into the event E

E ¼ ~oj
Yn
i¼1

frðPiÞ 	
Yn
i¼1

frþdðPiÞ;
Yn
i¼1

frðPiÞ 	
Yn
i¼1

fr�dðPiÞ
( )

:

According to the radio propagation model Eq. (1), the out-
comes in the event E satisfy the following inequality:

Yn
i¼1

1

si

ffiffiffiffiffiffi
2p

p e
�ðPi�miðrÞÞ2

2s2 	
Yn
i¼1

1

si

ffiffiffiffiffiffi
2p

p e
�ðPi�miðr
dÞÞ2

2s2 :

After simplification, it is equivalent to

Xn
i¼1

miðr
 dÞ � miðrÞ
si

Yi � mðr
 dÞ � mðrÞ
2si

� �
� 0; (6)

where miðrÞ is the average RSS of AP i at r.
We normalize RSS readings Pi with respect to Yi ¼ Pi�mi

si
,

where si might differ among different APs. For a given loca-
tion of the receiver, the received signal propagated from dif-
ferent APs can be through different paths. A simple
example is that one AP’s signal is propagated through the
line-of-sight (LOS) channel and another AP’s signal could
be propagated through the non-line-of-sight (NLOS) chan-
nel to the receiver; therefore, the observed values of s for
different APs can be different [32], [33]. The distance
between two APs are usually hundreds of meters in practice
to save the infrastructure investment, since one AP could
cover an area of radius about 100 meters; moreover, densely
deploying APs could incur interference. Consequently, it is
reasonably to assume that the distance between two APs for

Fig. 1. Integration domain for one-dimensional localization with single
measurement for single AP.
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localization is larger than the dimension of d neighborhood
of a receiver’s real location. This is why we assume the
value of s is constant for a given AP as shown in Equa-
tion (1) but the values of s with respect to different APs are
different. The experiment results to be shown in Section 8
also support such modeling.

We use ~mðrÞ to denote the mean RSS outcome at r. Now
that it refers to the outcome itself, this notation does not
depend on any coordinate system. Given a specific average
RSS ~mðrÞ, the set of fYig forms a coordinate basis for the
sample space, where the origin is ~mðrÞ, and each dimension
is suppressed by a factor of si. We use this coordinate sys-
tem to characterize the event E and its probability in the fol-
lowing several sections due to its simplicity for the small
scale analysis.

Apparently, the two constraints shown in Eq. (6) are two

non-parallel hyper-planes in the sample space. Vectors
~h1 ¼ ½ 1

2s1
ð�m1ðrÞ þ m1ðr� dÞÞ; 1

2s2
ð�m2ðrÞ þ m2ðr� dÞÞ; . . . ; 1

2sn

ð�mnðrÞ þ mnðr� dÞÞ�T ; ~h2 ¼ ½ 1
2s1

ð�m1ðrÞ þ m1ðrþ dÞÞ; 1
2s2

ð�
m2ðrÞ þ m2ðrþ dÞÞ; . . . ; 1

2sn
ð�mnðrÞ þ mnðr þ dÞÞ�T together

span a plane W. As restrictions to the event E, Eq. (6) can
then be rewritten in the vector form

2~h1ð~o� ~h1Þ � 0;

2~h2ð~o� ~h2Þ � 0:

�
(7)

It is important to note that ~h1 and ~h2 can denote both the
normal vectors to each hyperplane and the two points on
each hyperplane that are closest to the origin. This fact will
be helpful to deal with the two-dimensional issue. Now that
the PDF and the constraint conditions are all normalized,
we can rotate the coordinate system fYig to another ortho-
normal basis f~eig; i ¼ 1; 2; . . . ; n, where ~e1 is parallel to ~h1

and ~e2 2 W. Consequently, W is spanned by only two coor-
dinate axes. The rest coordinate axes are therefore all
orthogonal to the plane. There exists an orthonormal basis
for subspace �W, i.e., f~eig; i ¼ 3; . . . ; n. Any outcome ~o in the
sample space can be decomposed into ~o ¼Pi ci~ei; where
coefficients ci is determined and unique for any given vector
~o and orthonormal basis f~eig. Eq. (6) can then again be
rewritten in the component form of the f~eig basis

2j~h1~e1jðc1 � j~h1~e1jÞ � 0;

2j~h2~e1jðc1 � j~h2~e1jÞ þ 2j~h2~e2jðc2 � j~h2~e2jÞ � 0:

�
(8)

Thus the probability that the system correctly estimates
the user’s location is

RðEÞ ¼
Z
E

frð~P Þden (9)

¼
Z c1�j~h1j

�1
de1

Z j~h2 ~e1 j2þj~h2 ~e2 j2�j~h2 ~e1 jc1
j~h2 ~e2 j

�1

1

2p
e�

e2
1
þe2

2
2 de2: (10)

Note that frð~P Þ is an n-variable Gaussian PDF. As of now,
we successfully reduce the multiple integral to a much sim-
pler two dimensional one. Multivariate Gaussian integral
Eq. (11) is integrated on the area indicated in Fig. 2.

By Eq. (2), the dimension of E can be further reduced, for
that ~h1 and ~h2 will now be parallel to each other, though in
different directions

~h1 ¼ ½� 1
2s1

m0
1ðrÞd; . . . ;� 1

2sn
m0
nðrÞd�T ;

~h2 ¼ ½ 1
2s1

m0
1ðrÞd; . . . ; 1

2sn
m0
nðrÞd�T :

(

Thus the two constraint conditions shown in Eq. (6) are par-
allel to each other. RðEÞ can then be simplified as

RðEÞ ¼
Z j~h1j

j~h2j
de1

Z �1

�1

1

ð ffiffiffiffiffiffi
2p

p Þ2 e
�e2

1
þe2

2
2 de2 (11)

� erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ð

m0
i
ðrÞd
2si

Þ2
r

ffiffiffi
2

p

0
BB@

1
CCA: (12)

4.3 Discussions

We can see that Eq. (12) is equivalent to Eq. (5) when n ¼ 1
meaning that there is a single AP in the room, which corrobo-
rates our analysis. Moreover, the analysis above reveals some
insight into the design of the indoor localization. First, the
more data are reported to the system, the more reliable the

location estimation is, since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ið
m0
i
ðrÞd
2si

Þ2
r

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm

0
i
ðrÞd
2si

Þ2
r

.

Second, if
m0
i
ðrÞ
si

	 m0
jðrÞ
sj

; 8i; j � n, the reliability of the result
can beimproved if the user reports APi’s RSS rather than the
other. This means that reporting a measurement of a cleaner
channel (smaller s) is more effective, and the sharper the sig-
nal varies around the user’s location (greater m0ðrÞ), the easier
it is for the system to pinpoint the user’s location.

5 LOCALIZATION IN TWO-DIMENSIONAL SPACE

Finding the event E in the two-dimensional localization is
more challenging. To simplify the modeling, we first pres-
ent a mathematical expression of Q in the physical space,
based on which we try to find the shape of the event E in
the sample space. We are to prove that E is a hyper-
cylinder, and then prove that the intersection between the
hyper-cylinder and the cross-section plane is in the shape of
an ellipse, which makes it possible to obtain the reliability
through integration.

5.1 Multiple Measurements for Multiple APs

Fig. 3 illustrates how to represent a location in the two-
dimensional physical space, where the location of the user
is ~r and the location of any point on the boundary of the
area Q is ~r0. We use~d ¼ ~r0 �~r to denote a two-dimensional
vector with the direction from the user’s actual location to
any point on the boundary of Q. We use u to denote the
angle between ~d and the horizontal axis, and use fi to

Fig. 2. Integration domain for one-dimensional localization with multiple
measurements for multiple APs.
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denote the angle betweenrmið~rÞ and the horizontal axis. By
Eq. (2), we have

mið~r0Þ � mið~rÞ ¼ rmið~rÞ~d ¼ djrmið~rÞjcosðu � fiÞ; (13)

where d ¼ j~dj.
We want to find the event that the user is localized

within the area Q. According to MLE, this is equivalent to
find E, where the probability density of the user’s appear-
ing on the boundary of Q is no greater than that of the user’s
appearing at~r

E ¼
�
~oj
Yn
i¼1

f~rðPiÞ 	
Yn
i¼1

f~rþ~dðPiÞ
�
: (14)

All outcomes in E follow the inequality

Xn
i¼1

mið~rþ~dÞ � mið~rÞ
si

Yi � mið~rþ~dÞ � mið~rÞ
2si

 !
� 0: (15)

Substituting Eq. (13) into Eq. (15), we have the specific
description of E

Xn
i¼1

djrmið~rÞj
si

cosðu � fiÞ Yi � djrmið~rÞj
2si

cosðu � fiÞ
� �

� 0:

(16)

Constraint condition Eq. (16) should hold true for any u,
thus there will be an infinite set of hyper-planes surround-
ing event E in the sample space, as shown in Fig. 4. We
define the n-dimensional normal vector of the hyper-plane
to be a function of u:

~hðuÞ ¼ djrm1ð~rÞj
2s1

cosðu � f1Þ; . . . ;
djrmnð~rÞj

2sn
cosðu � fnÞ

� 	T

Theorem 1. The orbit of f~hðuÞg and the origin are coplanar, i.e.,
on the same two-dimensional plane in the sample space.

Proof. This is equivalent to prove that there exists a rank
n� 2 complementary subspace �W of W, where W is
spanned by f~hðuÞg. Formally, 8~g 2 �W; 8u , ~hðuÞ �~g � 0,
that is

½djrm1ð~rÞj
2s1

fcosucosf1 þ sinusinf1g; . . . ;
djrmnð~rÞj

2sn
fcosucosfn þ sinusinfng�½g1; . . . ; g2�T � 0:

Consequently, we need to prove

cosðuÞ½djrm1ð~rÞj
2s1

cosf1; . . . ;
djrmnð~rÞj

2sn
cosfn�½g1; . . . ; gn�T � 0;

sinðuÞ½djrm1ð~rÞj
2s1

sinf1; . . . ;
djrmnð~rÞj

2sn
sinfn�½g1; . . . ; gn�T � 0:

8<
:

The equations above hold true for all u, thus

½ djrm1ð~rÞj
2s1

cosf1; . . . ;
djrmnð~rÞj

2sn
cosfn�½g1; . . . ; gn�T � 0;

½ djrm1ð~rÞj
2s1

sinf1; . . . ;
djrmnð~rÞj

2sn
sinfn�½g1; . . . ; gn�T � 0:

8<
: (17)

Adding n� 2 lines of zero row vectors under the row
vector in Eq. (17) makes an n
 n square matrixH

H ¼
djrm1ð~rÞj

2s1
cosðf1Þ . . . djrmnð~rÞj

2sn
cosðfnÞ

djrm1ð~rÞj
2s1

sinðf1Þ . . . djrmnð~rÞj
2sn

cosðfnÞ
0 :: 0

0
B@

1
CA:

Then �W is the solution space to the linear formula:
H~g ¼ 0, where rankðHÞ � 2, so rankð �WÞ 	 n� 2; there-
fore, rankðWÞ ¼ n� rankð �WÞ � 2. The straight line con-
necting ~hðuÞ and ~hð�uÞ will always come across the
origin, thus the origin is also in planeW. tu
Equation (13) means that W is a tangent plane of surface

M at ~mð~rÞ, where M ¼ f~mð~r0Þj~r0 2 Sg is the mean surface of
RSS readings. Repeat the technique we used in Section 4.2,
we will be again able to reduce the multivariate integral in
the whole event to a two variable integral on a subset of
plane W. The next is to determine the domain of probability
integration. By definition, it is the area inside the envelop of
f~hðuÞg.
Theorem 2. The orbit of f~hðuÞg is an ellipse.

Proof. Theorem (1) states that the orbit of f~hðuÞg is in a
plane. To prove Theorem (2) is equivalent to prove that
8u; 9c,

~hðuÞ ¼ ~UcosðcÞ þ ~V sinðcÞ; (18)

where ~U and ~V are constant vectors and ~U ~V ¼ 0. If there
exists such a constant a ¼ u � c satisfing Eq. (18), then
Theorem (2) is proven

~hðuÞ ¼
Xn
i¼1

djrmið~rÞj
2si

n
cosðcþ a� fiÞ

o
Yi (19)

¼
Xn
i¼1

djrmið~rÞj
2si

n
cosða� fiÞcosc� sinða� fiÞsinc

o
Yi:

(20)

Fig. 4. Integral area of two-dimensional space.

Fig. 3. Two-dimensional localization with multiple measurements for
multiple APs.
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If ~U and ~V are assigned as following then Eq. (19) is
satisfied

~U ¼Pi
djrmið~rÞj

2si
cosða� fiÞYi

n o
;

~V ¼Pi � djrmið~rÞj
2si

sinða� fiÞYi

n o
:

8><
>: (21)

Thus ~U ~V ¼ 0 is equivalent to

fðaÞ ¼
Xn
i¼1

djrmið~rÞj
2si

� �2

sinð2a� 2fiÞ ¼ 0: (22)

Apparently, Formula (22) has four different solutions
of a in the interval between 0 and 2p, because
fðaÞ ¼ �fðaþ p=2Þ and fðaÞ is a continuous function.
There will be four zero points within each 2p period. The
four solutions actually correspond to four different
assignments of vector ~U to the semi-major axes and
semi-minor axes. However, as we are only interested in
the length of the semi-major axis and semi-minor axis, all
four kinds of assignments are the same. We will use ~U as
the semi-major axis in the following sections

X
i

djrmið~rÞj
2si

� �2

ðsinð2aÞcosð2fiÞ � cosð2aÞsinð2fiÞÞ ¼ 0;

(23)

where

tan2a ¼
Pn

i¼1ðdjrmið~rÞj
2si

Þ2sinð2fiÞPn
i¼1ðdjrmið~rÞj

2si
Þ2cosð2fiÞ

:

Thus we have

j~U j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1fdjrmið~rÞj
2si

cosða� fiÞg2
q

;

j~V j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1fdjrmið~rÞj
2si

sinða� fiÞg2
q

:

8><
>: (24)

tu
Consequently, the reliability of the location estimation in

the two-dimensional space is

RðEÞ ¼
Z

e2
1

j~U j2þ
e2
2

j~V j2¼1

1

2p
e�

e2
1
þe2

2
2 de1de2 (25)

¼ j~Ujj~V j 1
2p

Z 2p

0

1� e�
cos2cj~U j2þsin2cj~V j2

2

cos2cj~U j2 þ sin2cj~V j2 dc: (26)

5.2 Discussions

Most conclusions in the one-dimensional situation still hold
true in the two-dimensional case. More data will yield
higher reliability; however, there are some distinguishable
properties in the two-dimensional case worth of mention-
ing. First, if the rmið~rÞ for all APs are the same, which
means that fi ¼ fj; 8i; j, then it is impossible to determine
the user’s location. This is because j~V j ¼ 0 in this case thus
RðEÞ ¼ 0. It means that there should be at least two APs
and the corresponding directions of rmið~rÞ are different
from each other. Second, if the user observes that rmið~rÞ
and rmjð~rÞ for two APs i and j are either in the same

direction or in the opposite direction, then it is just like in

the one-dimensional case, thus if jrmiðrÞj
si

	 jrmjðrÞj
sj

; 8i; j � n,

reporting the RSS reading from AP i is more effective than
reporting that of AP j for location determination.

6 BEST STRATEGY FOR LOCATION

DETERMINATION

The analysis above shows that the utilities for reporting RSS
fingerprints from different APs are different in the location
determination process. A natural question to ask is: which
fingerprints should the user report to the system so that the
most accurate location estimation can be obtained? Before
revealing the answer to such a question, we first present the
fundamentals of the location determination.

6.1 Fundamentals of Location Determination

The fundamental issue of location determination is that: can
every outcome in the sample space be mapped into a loca-
tion in the physical space. The mean of RSSes ~mð�Þ is a con-
tinuous mapping from the physical space to the mean
surface of RSSes M. According to Eq. (2), each small area
around ~mð~rÞ can be approximated as a plane. Recall that the
event E in the two-dimensional case is a hyper-cylinder.
According to Theorem 2, the intersection of the hyper-
cylinder and M forms an orbit, which is the same two-
dimensional plane as ~mð~rÞ; therefore, if we shrink d to zero,
then the hyper-cylinder will shrink to an n� 2 dimensional
body �W and intersect withM at ~mð~rÞ. We use Fig. 5a to illus-
trate a simple example of 3-D sample space. �W is the event
that the user is estimated to be most likely appearing at ~r,
because E is the event that the system estimates the user’s
location in the area with a radius no more than d.

Consequently,

~r ¼ M ð �WÞ; (27)

where M : Vn�2 ! S is a mapping from the set of outcomes
�W to the user’s most likely location~r.
However, it is worth noting that we in fact abuse the

notation ~r here, since the location obtained from the map-
ping M is not necessarily the actual location of the user. To
see this, recall that �W is a ðn� 2Þ-dimensional body perpen-

dicular to the tangent plane of M at ~mð~rÞ in the fPi
si
g coordi-

nate system, and M is a surface with curvature, thus it may
happen that �W1 and �W2 that induced by two tangent planes
of M intersects at an outcome, and this outcome can be
mapped into two different points on M. This scenario is

Fig. 5. Sample space of RSSes.
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illustrated as in Fig. 5a, where the outcome ~o could be
mapped into both ~r1 and ~r2. That is, the same set of RSSes
can result in different localizations.

If this happens, we also want to use MLE to derive which
location the user is more likely to appear. By the definition of
MLE, the intersection outcome should be mapped to the point

~r0 on M, if the inequality f~r0 ð~P Þ > f~r00 ð~P Þ is satisfied,

where f~r0 ð~P Þ ¼Qn
i¼1

1
si
ffiffiffiffi
2p

p e� Pi�mið~r0Þð Þ2=2s2i ; f~r00 ð~P Þ ¼Qn
i¼1

1

si

ffiffiffiffiffiffi
2p

p
e� Pi�mið~r00Þð Þ2=2s2i ; and ~r0 and ~r00 can be any points in the

physical space. If f~r0 ð~P Þ > f~r00 ð~P Þ, then ðPi�mið~r0Þ
di

Þ2 <

ðPi�mið~r00Þ
di

Þ2. This means that in the fPi
si
g coordinate system, the

Euclidean distance from the outcome ~o ¼ ½P1
s1
; P2
s2
; . . . ; Pn

sn
�T to

the point ½m1ð~r0Þ
s1

; m2ð~r0Þ
s2

; . . . ; mnð~r0Þ
sn

�T should be less than that to

½m1ð~r00Þ
s1

; m2ð~r00Þ
s2

; . . . ; mnð~r00Þ
sn

�T . It should be noticed that the latter

two arrays are the fPi
si
g representation of the corresponding

mean RSS outcomes ~mð~r0Þ and ~mð~r00Þ, respectively, which are
two arbitrary points on the mean RSS surfaceM; therefore, we
should map the intersection outcome to the point with shortest
Euclidean distance toM in the fPi

si
g coordinate system.

The analysis above indicates that if the user reports to the
system the outcomes that are closer to M, it is more likely
the user can be localized to the actual location. Consider the
mean RSS surface M, no matter how great the curvature of
M is, we can always find a very small space in Vn which is
around ~mð~rÞ on M, so that the part of M in such a small
space can be approximated to its tangent plane W at ~mð~rÞ.
Each �W for the given ~mð~r0Þ is parallel to that for others. If we
move ~r around on S, the point ~mið~rÞ moves around corre-
spondingly on W. This is equivalent to say that �W scans the
entire small space in Vn.

Every point within the small space is on a unique �W,
and there must be a mapping from Vn to S for every
point in the sample space around M. It is interesting to
find that if the space is very small, the tangent plane
approximation is more accurate thus mapping the out-
come into the surface is almost the same to find the
Euclidean distance. If the outcome is far from M, it may
happen that there is no such a �W so that the outcome can
be mapped to a location.

In conclusion, if M is a plane, there must exist a function
from Vn to S; ifM is with curvature, the nearer the reported
outcomes to M, the more likely the system will return a reli-
able location estimation with accuracy d.

6.2 Best Strategy

With revealing the fundamentals of location determination,
we now derive which APs users should measure so that
they can be localized with the highest accuracy with the
given reliability. Let U ¼ fAPig; i ¼ 1; . . . ;m be the set of all
APs that can be sensed by the user’s mobile device. A mea-
surement strategy is defined as a sequence of measurements
on APs and is denoted by Vn ¼ ðs1; . . . ; snÞ; sj 2 U. Note that
the the superscript of sj is the index of the measurement in
the sequence, and it does not necessarily mean that the mea-
surement is performed on APj. One AP can be measured
more than once in the sequence. The whole set of strategies
is denoted as Un, where the size of the set ismn. The optimal
strategy is denoted by V�

n, V�
n 2 Un.

Recall that the event E is a hyper-cylinder in the sam-
ple space and the intersection between the hyper-cylinder
and M is an ellipse centered at ~mð~rÞ, as shown in Fig. 5b.
We now consider another event EðcÞ, which is also a
hyper-cylinder in the sample space; however, we let the
intersection between such a hyper-cylinder and M be a
circle centered at ~mð~rÞ and with radius c, where ~r is the
actual location of the user as shown in Fig. 5b. In another
perspective, EðcÞ denotes the event that the outcomes for
localizing a user at ~r fall in the newly defined hyper-cyl-
inder. Thus the reliability of the location estimation is in
fact the probability of the event EðcÞ, which is similar to
the previous analysis

RðEðcÞÞ ¼
Z 2p

0

Z c

0

1

2p
e�

r2cos2cþr2sin2c
2 rdrdc (28)

¼ 1� e�c2=2: (29)

Let us switch our attention to the physical space. We con-
sider the vicinity of~r, where each point on the boundary of
the vicinity represents an outcome in Vn. The vicinity is
denoted as U and it must satisfy that the outcomes for local-
izing those location points on the boundary of U just fall on
the circle on M. The point on the circle is denoted as mð~r0Þ.
Thus

Xn
i¼1

ðmið~r0Þ � mið~rÞÞ2
ð2siÞ2

¼ c2: (30)

Put ~r and ~r0 in the polar coordinate system with the origin
at ~r, then Eq. (30) can be transformed into

Pn
i¼nðrðuÞj

rmið~rÞjcosðu � fiÞÞ2=ð2siÞ2 ¼ c2, thus we have

r2ðuÞ ¼ 4c2P
picos2ðu � fiÞ

; (31)

where pi ¼ ðjrmið~rÞj=siÞ2. Examining Eq. (31), and let Q1 ¼P
picos

2fi; Q2 ¼
P

pisin
2fi; Q3 ¼

P
2picosfisinfi. We have

Q1r
2cos2u þ Q2r

2sin2u þ Q3r
2cosusinu ¼ 4c2, whichmeans

that U is in fact an ellipse.
Define a complex parameter Zi characterizing APi,

where Zi ¼ pie
2ifi ,

P
Zi ¼

P
pie

2ifi , and
P

Z�
i ¼P pie

�2ifi .

The area of U is denoted by u, where u ¼ 8pc2=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q1Q2 �Q2

3

q
. The area of the ellipse u profiles the accuracy

of the localization. Recall that the event EðcÞ determines the
area of U in the physical and EðcÞ is determined by out-
comes the user has submitted. This means that which RSS
fingerprints the user submitted determines the localization
accuracy. To maximize the accuracy is equivalent to mini-
mize u, thus the best strategy for the user is to adopt the
measurement sequence V�

n, where

V�
n ¼ arg max

Vn2Un

X
i2Vn

jZij
 !2

�j
X
i2Vn

Zij2
8<
:

9=
;: (32)

It is indicated by Eq. (32) that the location determination
system needs to search over the entire strategy profile Un to
find the optimal strategy. In the following discussion, we are
to prove that we can narrow down the searching space by
eliminatingAPswith small jZij from the set of all visibleAPs.
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Theorem 3. Suppose that a user can choose to measure APn,
APm and APg , where the measurement for each AP is denoted
by Zn, Zm and Zg , respectively. If Zn falls inside the ~OZmZg

in the complex plane, then Zn 62 Vn
�.

Proof. Fig. 6a shows an arbitrary Zn falls inside ~OZmZg in
the complex plane.O is the origin.WeuseA andC to repre-
sent the corresponding point of Zm and Zg . We are to prove
that anymeasurement such asZn that falls in the area of the
trianglemust not be an element ofV�

n using contradiction.
If Zn 2 V�

n, let T ¼PV�
n=fZng jZij, G ¼PV�n=fZng Zi,

where V�
n=fZng stands for the difference sequence of V�

n

eliminating an arbitrary measurement to AZn. If there are
multiple measurements to APn, it makes no difference to
eliminate any one of them, since the measurement order
does not matter. V�

n=fZng [ fZig stands for the strategy
V�
n=fZng plus a measurement to APi. T is a real number

while G could be a complex number. According to
Eq. (32), we should have uðV�

nÞ � uðVnÞ; 8Vn 2 U, where
uðVnÞ is the area of the ellipse in the physical space given
the chosen Vn. Then the following equations should hold
true for both m and g:

8pc2

uðV�
nÞ


 �2
	 8pc2

uðV�
n=fZng[fZmgÞ


 �2
;

8pc2

uðV�nÞ

 �2

	 8pc2

uðV�n=fZng[fZggÞ

 �2

:

8><
>: (33)

This is equivalent to prove ðT þ jZnjÞ2 � jGþ Znj2 	
ðT þ jZijÞ2 � jGþ Zij2, for i = m and g. According to
Eq. (32), we should prove that

G

T
ðZi � ZnÞ 	 jZij � jZnj: (34)

Let ui be the angle between Zn and Zi � Zn, then
jZij � jZnj > jZi � ZnjcosðuiÞ as shown in Fig. 6b. This
inequality still holds for the case jZij < jZnj or ui > p

2,
where the proof is straight and thus skipped due to the
limitation of space. It is straightforward that jGj < T ,
therefore j GT j < 1. Thus if Zn were to be an element of
V�
n, the following two equations should both be true:

eðZm � ZnÞ > jZg � ZnjcosðumÞ; (35)

eðZg � ZnÞ > jZg � ZnjcosðugÞ; (36)

where e is a unit vector.
In Fig. 6a, OB and OE are collinear. We draw two

lines BF and BG so that ffEBA ¼ ffABF , ffEBC ¼ ffCBG.
Eq. (35) indicates the range of direction for e is from BE
to BF (counterclockwise); Eq. (36) indicates the range of
direction for e is from BE to BG (clockwise); ffABC < p,
which means that it is impossible for the two scopes to
overlap, which means there is no such e that makes

Eqs. (35) and (36) true at the same time, and the inequal-
ities (33) can not hold simultaneously. Consequently,
Theorem (3) is proved by the contradiction. tu
Theorem 3 can be understood as following: If we use a

point on the convex plane to represent the measurement Zi,
then there will be many points on the plane representing all
possible measurements. Only those points on the convex
hull of all points are possible candidates of the best strategy.
It is worth mentioning that parameters used for determin-
ing the best strategy can be derived by analyzing the finger-
prints collected for each AP in the database. There is no
need for information about the location of APs, and no need
for explicit efforts from users either. Finding the best strat-
egy in a general case turns out to be non-trivial, and we
present the details in another work [34].

7 LOCATION DETERMINATION WITH IMPERFECT

INFORMATION

7.1 Imperfect Information

The cornerstone underpinning our analysis on localization
reliability above is the assumption: the distribution of the
RSS at each location~r is perfectly known. With such perfect
information, we can construct an one-to-one mapping from
the sample space to the physical space. In particular, we can
always find a point on the mean surface of the RSS based on
reported fingerprints, and the point on the mean surface
~mð~rÞ corresponds to a location in the physical space~r.

Ideally, themean of RSS readings at a given location can be
perfectly known from the database, if the number ofmeasure-
ments at the location is large enough in the training phase;
however, due to the cost of the training phase, the information
recorded at the fingerprints database is usually imperfect, and
the current crowdsourcing based fingerprints collection is
unable to guarantee the quality of submitted fingerprints. In
particular, crowdsourcing workers submit the current loca-
tion and correspondingRSSfingerprints observed to the local-
ization server in an opportunistic sensing manner [18], [21],
[26], [27], where the location of the reporting worker is esti-
mated with dead reckoning by utilizing the inertial measure-
ment unit (IMU) of the worker’s mobile device such as
accelerometer, magnetometer and gyroscope [26], [27]. Due to
the IMU error, the worker may incorrectly report the position
where fingerprints are collected. As a result, the perfect infor-
mation is usually unavailable in the database.

The consequence of the imperfect information is that the
value of ~mð~rÞ for each location in the physical space is inac-
curate. A natural question to ask is: How the imperfect
information will impact the reliability of location determina-
tion? In particular, what is the deviation from the true prob-
ability that a user can be correctly localized, which is
incurred by the imperfect information? With limited num-
ber of measurements in the training phase, what is the best
localization reliability can be obtained? These important
issues are to be addressed in the following.

7.2 Impact on Localization in One-Dimensional
Space

7.2.1 One-Time Measurement for Single AP

Recall our investigation of the simple case where the finger-
print is measured only once with respect to a single AP. The

Fig. 6. Proof of Theorem 3.
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domain E in the sample space corresponding to the d neigh-
borhood of ~r in the physical space is a line segment, where
the endpoints of the segment are Phigh and Plow, respectively.
If the database has perfect information of fingerprints,
sequential line segments in the physical space should be
corresponding to sequential line segments in the sample
space, as the ideal situation shown in Fig. 7, where A and B
are midpoints of the two line segments, respectively.

However, the practical situation is that the information
can be derived from the imperfect database, which means
that the region E can migrate to somewhere else, as shown
in the figure. We can use the midpoint to denote the line
segment itself. If the values of submitted fingerprints fall in
the shadow area as shown in Fig. 7, the server will deter-
mine that the user’s physical location should be correspond-
ing to the line segment B in the sample space with imperfect
information; however, the user’s actual location is in fact
corresponding to the line segment A. The localization server
can mistakenly determine the user’s location due to the
imperfect information.

Points on line segments in the practical situation could be
regarded as points on line segments in the ideal situation
after a random migration as shown in Fig. 7. For any point
on the d neighbourhood of r in the physical space, there is a
corresponding point in the sample space. We assume that
users appear on each point of the neighbourhood with the
same probability. We use x0 to denote the corresponding
point in the sample space for a given point in the physical
space, X1 to denote the right boundary of line segment A
after the random migration and X2 the right boundary of
line segment A before the randommigration.

In the user’s perspective, the probability deviation of cor-
rect localization is the absolute value of the difference
between the probability that the user should be localized in
certain location with perfect information and that with
imperfect information. If we define such a probability devi-
ation as the probability error, then the probability error
caused by the imperfect database in this particular case is

pe1 ¼
Z X2

X1

1

L0

1ffiffiffiffiffiffi
2p

p
s
e
�ðx�x0Þ2

2s2 dx; (37)

where L0 ¼ 2d.
We now consider a general case. Suppose that the length

of the line segment A is L, and we set the origin of the hori-
zontal axis to be at the left endpoint of line segment A, then
X2 ¼ L, where L ¼ Phigh � Plow as shown in Eq. (4). It is not
straightforward to determine the coordinate of X1, because
points on the line segment A can migrate to anywhere in the
sample space. A key observation is that X1 is actually a
Phigh on the line segment A0, thus X1 ¼ Lþ r1xþr2x

2 , where

r1x and r2x are deviations of the two midpoints A and B in
the practical situation, respectively. Note that r1x and r2x are
deviations along the horizontal axis, where deviating to the
right is positive and to the left is negative. As a result, the
probability error considering the general case as shown in
the figure is

pe2 ¼
Z 1

�1

Z 1

�1
pe1 �

N

2ps2
e
� Nðr2

1x
þr2

2x
Þ

2s2 dr1xdr2x: (38)

Since the error can also happen to the line segment A and
the line segment left to A, the overall error probability is

Pe ¼ 2

Z L0

0

pe2dr; (39)

where r denotes user’s physical location in the coordinate
system. Consider a very small d, the mean of the RSS is not
changing dramatically according to Eq. (2), thus we can
apply local linearization to points in both sample space and
physical space, which means that the length of a line seg-
ment in the sample space is proportional to that in the phys-
ical space

mð~r0Þ � mð~rÞ �ð~r0 �~rÞ � rmð~rÞ
� ð~r0 �~rÞ
��� ��� � rmð~rÞj j � cos’; (40)

where ’ is the angle between two vectors: ~r0 �~r and rmð~rÞ.
In one dimensional case, the angle ’ would be either 0 or p,
leading to cos’j j ¼ 1 and

mð~r0Þ � mð~rÞ
��� ��� � ð~r0 �~rÞ

��� ��� � rmð~rÞj j: (41)

Then we have

Pe ¼ 2

Z L

0

pe2
L

L0
dx0; (42)

where every parameter can be obtained from the database
in practice.

7.2.2 Multiple Measurements for Multiple APs

We now extend our analysis to the case where the database
contains fingerprints measured multiple times with respect
to multiple APs. Assume that the number of measurements
is n, then the sample space is n dimensional. Suppose that
nodes A and B are two points on the mean surface of the
sample space. The challenge comes with the n-dimension is
that: the two nodes can migrate to any positions in the
space, which results in that the drifted points may not be on
the mean surface thus making probability error analysis
extremely complicated. This is illustrated in Fig. 8, where A0

and B0 denote the drifted means in the practical situation,
respectively.

In Fig. 8, AB is an one-dimensional line segment and we
could use a hyperplane to cut it in the middle. Since A and
B denote means of two locations respectively, all reported
fingerprints fall in the left side of the hyperplane should be
determined to be at the location corresponding to A. All
reported fingerprints fall in the right side of the hyperplane
should be determined to be at the location corresponding to
B. We use ~r1 and ~r2 to denote the deviation of A and B,

Fig. 7. One-dimensional localization with imperfect information.
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respectively. Similarly, we can have hyperplane cut line seg-
ment A0B0 in the middle, and each side of the hyperplane
represents those fingerprints that can entail two different
localization results in the practical situation.

It is straightforward that if reported fingerprints fall in
area 1, the location determination result with imperfect
database is different from that with perfect database,
which incurs error. The location of the user should be
determined to be corresponding to the area of B, but it is
determined to be at the location corresponding to A. If
reported fingerprints fall in area 2, the location of the
user should be determined to be corresponding to the
area of A, but it is determined to be at that corresponding
to B. Localization errors happen when any of the events
happening, because the imperfect information makes the
serve believe that the boundary is the hyperplane inter-
secting with A0B0 while the real boundary is the one inter-
secting with AB.

The probability deviation that the user is correctly local-
ized can be derived if area 1 and 2 can be mathematically
characterized; however, the challenge is that it is difficult
to imagine the shape of areas in the n-dimensional sample
space. Line segment AB is one-dimensional, so its bisecting
hyperplane is n� 1 dimensional. Similarly, the bisecting
hyperplane of line segment A0B0 is also n� 1 dimensional.
Although AB and A0B0 are not in the same hyperplane,
their bisecting hyperplanes intersect with each other thus
sharing n� 2 dimensions. Consequently, we could always
rotate the coordinate system, so that the projections of the
two line segments are in the same plane while the rest of
the shared n� 2 dimensions orthogonal to the plane. That
is, no matter how many dimensions the sample space has,
we can always illustrate the situation in the sample space
as shown in Fig. 8.

For any point in the d neighbourhood of r in the physical
space, there is a corresponding point in the sample space.
The point in the sample space can also be mapped into a
two-dimensional surface after the coordinate system rota-
tion as described above. We use ðx0; y0Þ to denote the coor-
dinate of the point in the system after rotation. Then the
probability error for the particular case as shown in Fig. 8 is

p ¼
Z
area1

1

L0

1

2ps2
e
�ðx�x0Þ2þðy�y0Þ2

2s2 dxdy�Z
area2

1

L0

1

2ps2
e
�ðx�x0Þ2þðy�y0Þ2

2s2 dxdy

¼ 1

L0
ðp1 � p2Þ;

(43)

where L0 ¼ 2d. Note that fingerprints fall into area 3 will
definitely make the system to localize the user at the loca-
tion corresponding to A in both practical and ideal situation,
thus the deviation is only incurred by the difference
between area 1 and 2.

Consider the two hyperplanes bisecting AB and A0B0, we
now study the angle between the two hyperplanes so that
the specific expression of probability error can be derived. It
is straightforward that

cos u ¼
~AB � ~A0B0

ABj j A0B0j j
¼ ðL; 0Þ � ðr2x � r1x þ L; r2y � r1yÞ

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2x � r1x þ LÞ2 þ ðr2y � r1yÞ2

q ;
(44)

sin u ¼ r2y � r1y
�� ��

L
; (45)

where r1x, r1y, r2x and r2y denote deviations of A and B in
two dimensions, respectively. Assume thatN times of meas-
urements are performed independently in the training stage
to build up the fingerprints database, then the drift distance
ofA andB follow the Gaussian distribution withmean 0 and

variance value sffiffiffi
N

p , according to law of large numbers. That

is, r1x � Nð0; sffiffiffi
N

p Þ, r1y � Nð0; sffiffiffi
N

p Þ, r2x � Nð0; sffiffiffi
N

p Þ, r2y � N

ð0; sffiffiffi
N

p Þ. Consequently, values of r1x, r1y, r2x, r2y could appear

in the range �3sffiffiffi
N

p � 3sffiffiffi
N

p with high probability. We are able to
perform measurements many times so that r1x, r1y, r2x, r2y
are all small polynomial terms comparedwithL, thus the fol-
lowing approximation can be obtained:

cos u � r2x � r1x þ Lj j
L

: (46)

Since we have u < ~r1j jþ ~r2j j
L , and we can also make N big

enough to have the following approximation:

sin u � tan u � u: (47)

Note that
R
area1 �

R
area2 ¼

R
area1þarea3 �

R
area2þarea3. For the

integration over area 1 and 3, we have

p1 ¼
Z L=2�x0

cos u

�1

1

2ps2
e
� x2

2ps2dx; (48)

p2 ¼
Z L

2�x0

�1

1

2ps2
e
� x2

2ps2dx: (49)

Taking all possible situations for the data drift incurred by
imperfect information into account, the probability error for
location determination is

p ¼ 1

L0
erf

L=2� x0

cos u
ffiffiffi
2

p
s

� �
� erf

L=2� x0ffiffiffi
2

p
s

� �� 	����
����: (50)

The error can also happen in the line segment AB and the
line segment left to AB such as the line segment AC shown
in Fig. 9. Consequently, the location determination error is
determined by area1þ area5� area2� area4, which we
could be put as ½ðarea1þ area3þ area4þ area5þ area6Þ�
ðarea2þ area3þ area4þ area5þ area6Þ� þ ½ðarea5þ area1
þarea2þ area3þ area7Þ � ðarea4þ area1þ area2þ area3

Fig. 8. Imperfect information withmultiplemeasurements for multiple APs.
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þ area7Þ�. Thus we get the final probability error for the
multiple measurements over multiple APs

Pe ¼2

Z L

0

Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1

N2

4p2s4
e
�
Nðr2

1x
þr2

2x
þr2

1y
þr2

2y
Þ

2s2 p

dr1xdr1ydr2xdr2y
L

L0
dx0

¼2

Z L

0

Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1

N2

4p2s4
e
�
Nðr2

1x
þr2

2x
þr2

1y
þr2

2y
Þ

2s2

erf
L=2� x0

cos u
ffiffiffi
2

p
s

� �
� erf

L=2� x0ffiffiffi
2

p
s

� �� 	

dr1xdr1ydr2xdr2y
L

L2
0

dx0:

(51)

7.3 Impact on Localization in Two-Dimensional
Space

The practical indoor localization system partitions the two-
dimensional physical space into blocks [20], [21], such as the
one shown in the left part of Fig. 10, where the center of each
block represents the block itself. Let us first consider the ideal
case with perfect information. Recall that the corresponding
image in the sample space with respect to each point in the
physical space is an point on the mean surface M as shown
in the right part of Fig. 10. We use four hyperplanes to sur-
round the pointA on themean surfaceM, where each hyper-
plane is orthogonally cutting the line segment between A
and the neighbouring node in the middle. According to the
principle of MLE, if reported fingerprints fall in the sur-
rounded area, then the system will localize the user’s loca-
tion to be at block A. It is worth mentioning that we here do
not adopt the hyper-cylinder discussed in Section 5 as the
boundary in the sample space, because such a boundary can
leave certain areas in the physical space uncovered.

We now provide the mathematical expression of such a
surrounded area as shown in Fig. 10. Suppose that
A ¼ ½x1A; x2A; . . . ; xnA�T and B ¼ ½x1B; x2B; . . . ; xnB�T , then
the bisector plane of line segment ~AB is

~h1 ¼
~AB

2
¼ ðx1A � x1B; x2A � x2B; . . . ; xnA � xnBÞ

2
:

The other three bisector planes could also be presented in a
similar manner. If we use use area 1 to denote the surrounded
area, then area 1 can be determined by: ~h1 �~r � j~h1j2, ~h2 �~r �
j~h2j2, ~h3 �~r � j~h3j2 and ~h4 �~r � j~h4j2.

If we use area 0 to denote block A in the physical space,
and assume that the user will appear in any point of block

A with identical probability, then the reliability for the ideal
situation is

Pe1 ¼
ZZ

area0

dx0dy0

Z
. . .

Z
area2

ffiffiffiffiffi
N

p

2ps

 !n

e
�N ½ðx�x1Þ2þðx�xnÞ2 �

2s2
1

S0
dx1dx2 � � � dxn;

(52)

where S0 is the area of block A.
In the practical situation, the nodes A, B, C, D and E

migrate to A0, B0, C0, D0 and E0 in the sample space. We can
also use four hyperplanes to surround a corresponding area
2, so that if reported fingerprints fall in area 2, the user is
localized in block A in the physical space. Similarly, the reli-
ability for the practical situation is

Pe2 ¼
ZZ

area0

dx0dy0

Z
. . .

Z
area2

ffiffiffiffiffi
N

p

2ps

 !n

e
�N ½ðx�x1Þ2þðx�xnÞ2 �

2s2
1

S0
dx1dx2 � � � dxn:

(53)

Consequently, the probability error is Pe ¼ Pe1 � Pe2

�� ��.
It is extremely difficult to give a close-form expression of

Pe; however, the probability error analysis inspires us to
consider a very special case when determining the sur-
rounded area in the sample space mentioned above, which
could potentially incur large localization error. That is, what
if the nodes A, C and D are on the same straight line, which
means that the surrounded area is actually an open area.
Although the general mathematical expressions also hold in
the special case, the consequence in location determination
is that large-scale localization error could happen. The
physical meaning of the open area is that the user could be
localized in physical locations corresponding to faraway
areas in the sample space. In particular, if the reported fin-
gerprint is mð~r0Þ, based on which the user is most likely at
location ~r0, the system however still could localize the user
to be at some location faraway from ~r0.

Such a phenomenon can be avoided by utilizing the best
fingerprints reporting strategy when constructing the data-
base. We first illustrate why A, C and D could be on the
same straight line, as shown in Fig. 11. The left part of the
figure shows the setting of the physical space, and the right
part shows an example of two-dimensional sample space,
which means the number of measurements is two. In the
fingerprints collection phase, a site surveyor standing at A
could measure AP1 and AP2 once respectively, surveyors at
C and D measure AP1 and AP2 twice respectively, then the
corresponding nodes of these physical locations in the

Fig. 9. One-dimensional localization with multiple measurements for
multiple APs.

Fig. 10. Mapping from physical space to sample space.
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sample space are on the same straight line as shown in the
right part of Fig. 11.

Theway surveyors construct the database described above
could be very possible if the best strategy is not considered.
This is because surveyors usually prefer to measure APs with
strongest signal strengths, such as AP1 and AP2 with respect
to C andD, respectively. However, referring to the best strat-
egy theory could reveal that such a survey can be of little avail
for localization. Take location C for example, if the surveyor
measures AP1 twice, the corresponding complex parameter
Z1 are on the same straight line in the complex plane, which
makes ðPi2Vn

jZijÞ2 � jPi2Vn
Zij2 ¼ 0, where Vn ¼ f1; 1g

according to the surveying process. This could be better
understood by reviewing Eq. (32). Although the best strategy
presented earlier is for location estimation, it also provides
guidance for the training phase.

However, if the number of measurements is small, it may
happen that the migrated points in the sample space are col-
linear, which will incur large deviation from the reliability.
Fortunately, our numerical analysis shows that it is very dif-
ficult for such subtle migration of points in the sample space
to happen, and deviations of reliability incurred by imper-
fect information is usually very small.

8 EXPERIMENTAL RESULTS

We conduct experiments with the trace data collected by the
EVARILOS testbed [35], in order to verify our theory. The
data are collected in an unmanned utility room with many
metal objects termed as “Zwijnaarde”, where there is almost
no outside interference and no persons are present in the
environment. The trace data contains 144557 combinations
of access point (AP) and reference point (RP), and each (AP,
RP) tuple contains a number of RSS raw measurements.
Detailed description of the testbed and data could be found
in [36], [37], [38].

Verification of Main Assumptions.Although the rationale of
our main assumption about the radio propagation has been
explained in Section 3, where a number of work adopting the
similar assumption is briefly surveyed, we still validate our
assumption by performing analysis of the trace data from
the EVARILOS testbed. We first filter out those unreliable
measurements, where there is only 1 or 2 RSS readings
recorded or all the RSS readings are exactly the same.

Fig. 12a shows three adjacent RPs’ RSS observations and
fitted curves. The RSSes observed at the three locations
(1,290, 1,980), (1,290, 1,270) and (1,890, 1,270) are with
respect to the same AP at (1,000, 1,712), and the RPs are
round 3.5 meters from each other. There are totally 272, 146

and 98 observations at the three RPs, respectively. Observa-
tion curves represent the proportions of the observed RSS
value. We fit the observation curves, and find they are
approximately to be Gaussian distribution, with skewness
and kurtosis less than j0:5j and j3:3j respectively. It can be
seen that the observed RSS readings at adjacent RPs have
similar value of s, and the mean does not change
dramatically.

Fig. 12b shows the RSS values observed at the same RP
(2,490, 1,270) with respect to three different APs at (2,644,
1,500), (3,998, 728), and (1,000, 600), respectively. The total
numbers of RSS records with respect to each AP are 173,
208, and 196; the fitted curves are with the skewness and
kurtosis less than j0:31j and j3:2j, respectively. The observa-
tions corroborate our assumption that the RSS values
observed at the same location with respect to different APs
are with quite different values of s.

Fig. 13 shows the change of s’s value with the distance
from the AP. We show the trend of the change with respect
to the three APs. We examine RSSes observed at all RPs that
are less than 35 meters from the AP, and we calculate the
corresponding s value at each RP. As shown in the figure,
45 percent of the locations’ values of s vary less than 2, and
81 percent of the values of s vary less than 5, if the RP is less
than 17 meters from the AP. If the distance exceeds
23 meters, the change of the value of s becomes dramatic.
This observation corroborates the model in [32], [33], which
supports our modeling assumption in Section 3.

Localization Performance. We use the data observed at a
part of the RPs as the training set and that observed at the
rest of the RPs as the test set to perform localization, with
results illustrated in Fig. 14a. We compare performance of
the proposed best strategy based on Eqs. (32) and (26) with
other three reporting strategies widely used in the previous
work [18]. The best strategy is the logical result of our
modeling and analysis, thus if it outperforms other fre-
quently used strategies, our modeling and analysis could be
validated.

Fig. 11. Special case. Fig. 12. Characteristics of radio propagation.

Fig. 13. Change of s with the distance.
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With StrongestAvg, the user measures APs with the stron-
gest average RSSes can be observed at the to-be-determined
location in the online phase. With StrongestMax, the user
measures APs with the strongest RSSes can be observed.
With the Similarity strategy, APs are first clustered accord-
ing to the similarity of their generated RSSes and the repre-
sentative AP of each cluster is then selected. How to
compute the similarity metric and how to select the repre-
sentative AP in a cluster are described in [18]. As can be
seen from Fig. 14a, it is obvious that the best strategy out-
performs other three strategies. A more detailed statistical
results are tabulated in Table 1. Although the best strategy
has the largest maximum error due to the randomness of
fingerprinting based localization approach, the overall per-
formance is better than the other three strategies.

Fig. 14b illustrates the localization results influenced by
the number of training times in the offline phase. We use
reliable RSS records in all RPs to do the experiment in order
to ensure that there are enough data for training. We use a
part of RSS data for the offline phase and the rest of the data
for testing. With the number of data used in the offline
phase increasing, it is clear that the average localization
error is decreasing as shown with the curve in the figure,
which corroborates our theoretical analysis. Since for each
RP, there are a part of RSS records used for training, if the
data for testing are with the same RP, it is possible that the
minimum localization error equals 0 as shown in the figure.

9 CONCLUSION

We have presented a general probabilistic model to shed
light on a fundamental question: how good the RSS finger-
printing based indoor localization can achieve? Concretely,
we have presented the probability that a user can be local-
ized in a region with certain size, given the RSS fingerprints
submitted to the system. We have revealed the reliability of
location estimation. Moreover, we have shown that there
exists an optimal fingerprints reporting strategy that can
achieve the best accuracy for given reliability. Further, we
have analysed the influence of imperfect database informa-
tion on the reliability of localization, and found that the

impact of imperfect information is still under control with
reasonable number of samplings in the training phase.
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